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SUMMARY

A �nite volume solver for the 2D depth-integrated harmonic hyperbolic formulation of the mild-slope
equation for wave propagation is presented and discussed. The solver is implemented on unstructured
triangular meshes and the solution methodology is based upon a Godunov-type second-order �nite vol-
ume scheme, whereby the numerical �uxes are computed using Roe’s �ux function. The eigensystem
of the mild-slope equations is derived and used for the construction of Roe’s matrix. A formula-
tion that updates the unknown variables in time implicitly is presented, which produces a more accu-
rate and reliable scheme than hitherto available. Boundary conditions for di�erent types of boundaries
are also derived. The agreement of the computed results with analytical results for a range of wave
propagation=transformation problems is very good, and the model is found to be virtually paraxiality-
free. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Accurate numerical modelling of water wave propagation from o�shore to coastal regions is of
paramount importance to coastal, port and environmental engineers. Such models can greatly
simplify and expedite the design of coastal structures and the evaluation of their in�uence on
the surrounding environment.
As waves travel towards the coastline they are transformed by the combined e�ect of

complex physical processes. Initial e�orts in nearshore wave modelling tended to calculate
separately the e�ect of each one of these processes resulting sometimes in erroneous predic-
tions (e.g. unrealistically high wave heights predicted by wave ray models in caustic zones).

∗ Correspondence to: J. Bokaris, 6 Paraschou Road, P. Psychiko, 154 52, Athens, Greece.
† Research Student.
‡ Reader in Coastal Engineering.

Contract=grant sponsor: Commission of the European Communities; contract=grant number MAS3-CT97-5052

Received January 2000
Copyright ? 2003 John Wiley & Sons, Ltd. Revised 21 April 2002



226 J. BOKARIS AND K. ANASTASIOU

This was mainly due to the fact that the equations used to model the problem were over-
simpli�ed and did not describe the physics adequately. The need to include simultaneously
more of the physical processes in order to describe more realistically the transformation of
water waves was evident.
Berkho� [1] attempted to calculate the combined e�ect of the processes of di�raction, re-

fraction, shoaling and re�ection. In the depth-integrated elliptic mild-slope equation he derived,
small-amplitude wave theory was used under the assumption of a gently sloping seabed. In
Berkho�’s equation the wave energy is correctly transported by the group celerity rather than
the phase celerity and can therefore properly express wave shoaling and refraction [2]. Booij
[3] numerically investigated the ‘mild-slope’ assumption for a plane slope and concluded that
the equation could be used for a slope up to 1:3 for waves propagating normal to the depth
contours, and up to 1:1 for propagation parallel to the depth contours.
Berkho�’s computationally expensive elliptic mild-slope equation, led Radder [4] and other

researchers to derive more e�cient parabolic approximations that omitted the re�ected �eld
and required paraxiality (wave propagating in the direction of one of the computational axes).
Kirby [5] used a minimax approximation in the parabolic formulation in order to allow for
large angles of wave propagation. In tackling paraxiality Isobe [6] introduced a curvilin-
ear co-ordinate system, corresponding to wave rays and fronts appropriate to a simpli�ed
bottom topography, that resulted in no caustics being formed. It is noted that such an over-
simpli�cation of the bathymetry might omit essential bathymetric features. Li and Anastasiou
[7] noted that re�ections could be taken into account in the parabolic equation method, but in
that case additional computational resources were required. The e�ort to overcome the limi-
tations of paraxiality, as well as the omission of the re�ected wave �eld render the parabolic
equation method no longer computationally viable. Both limitations are severe and cannot
be overlooked since areas of considerable re�ection arise in the vicinity of surface piercing
obstacles (e.g. harbours, breakwaters, etc.), which are very frequently encountered in coastal
engineering applications. Furthermore, the investigation of the behaviour of a structure under
di�erent angles of wave incidence may be required. Having to re-orient the computational
axes each time in the direction of wave propagation is troublesome. Finally, a paraxiality
bound model does not constitute an appropriate basis for modelling directional irregular sea
states.
Using a �nite di�erence method Copeland [8] solved the harmonic hyperbolic form of the

mild-slope equation which does not neglect the re�ected �eld and requires reduced computing
e�ort compared with the elliptic form. For an horizontal bottom, the hyperbolic system of
equations reduces to the linearized equations of continuity and motion derived by Ito and
Tanimoto [9] in order to predict the time-evolution of long waves.
In view of the above observations, the hyperbolic form of the mild-slope equation was

selected as the modelling basis in the present study. In addition the e�cient discretization of
irregular domains often associated with realistic situations, was considered an essential part of
the present study. The �nite di�erence method does not o�er great �exibility with respect to
discretizing irregular domains. The �nite element method can deal with irregular boundaries
but is more suitable for the elliptic formulation of the mild-slope equation. Anastasiou and
Chan [10] recently solved the full system of the depth-integrated 2D shallow water equations
and the 2D incompressible Navier–Stokes equations [11] using a �nite volume technique on
unstructured triangular meshes whereby the boundaries are dealt with the method of char-
acteristics. The method is applicable to domains of arbitrary complexity and can deal with
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discontinuities, in�ows and out�ows, as well as wall boundaries. The accuracy of the results
Anastasiou and Chan [10, 11] reported is impressive. Consequently, a similar methodology
for the solution of the mild-slope equation for linear, regular waves, has been adopted herein.
It was decided to adopt a linear governing equation in order to keep the computational cost
relatively low and in view of the fact that the linear mild-slope equation predicts with a sat-
isfactory accuracy the wave height and wave direction. If it is desired to compute the water
particle kinematics to a high degree of accuracy, then the waveheights derived from the linear
solution of the mild-slope equation may be used in conjunction a high-order non-linear wave
theory.
The present numerical model is second-order accurate and is based on a cell-centred �nite

volume upwind scheme implemented on an unstructured triangular mesh. The irregular domain
is initially discretized using the versatile automatic unstructured triangular mesh generator of
Anastasiou and Chan [12]. Roe’s [13, 14] �ux function is subsequently used to evaluate the
inviscid �uxes at the triangular cell edges, assuming a local Riemann problem in the direction
normal to the cell edge. The eigensystem required for the evaluation of Roe’s matrix is derived
from the �ux Jacobian matrix in the direction normal to the cell edge. To the best of the
authors’ knowledge such a solution of the mild-slope equation is reported herein for the �rst
time.

2. FINITE VOLUME DISCRETIZATION OF THE 2D MILD-SLOPE EQUATIONS

Assuming an incompressible and homogeneous �uid, irrotational �ow, no viscosity, slowly
varying bathymetry and small-amplitude waves, the harmonic form of the mild-slope equation
is given by the second-order partial di�erential equation

∇ · (ccg∇�)− cg
c
@2�
@t2

= 0 (1)

where c, cg are the wave celerity and the group celerity, respectively, as de�ned by small-
amplitude wave theory, � is the free surface elevation of the water, ∇=(@=@x)i + (@=@y)j,
i.e. the horizontal gradient operator. Equation (1) can be decomposed into the following
system of �rst-order linear partial di�erential equations, identical to Copeland’s [8] hyperbolic
formulation

∇ ·Q+ cg
c
@�
@t
=0

@Q
@t
+ ccg∇�=0

(2)

where

Q=(qx; qy); qx=
∫ 0

−d
Zu dz=

ccg
g
u0;

qy=
∫ 0

−d
Zv dz=

ccg
g
v0; Z =

cosh k(z + d)
cosh kd

(3)
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and u, v are the horizontal velocity components in the x, y directions, respectively, and u0, v0
are their values at the stillwater level (z=0), g is the acceleration due to gravity. In essence
Q is an arti�cial variable and in order to perform the calculation for the surface elevation,
�, using Equations (2) it is not necessary to know the general physical form of Q (other
than its harmonic nature) except where boundary values are required [8]. Equations (2) can
be further written in a conservative form suitable for �nite volume discretization, generally
expressed by

@U
@t
+∇ ·F=G (4)

Integration and use of the divergence theorem of Gauss yields

@
@t

∫ ∫
�
U d� +

∮
S
F · n dS=

∫ ∫
�
G d� (5)

where � is the domain of interest, S is the boundary surrounding �, n is the normal vector
to S in the outward direction, U is the vector of conserved variables, F is the vector of �ux
functions through S, and G is the vector of source terms. As opposed to the shallow water
equations [10], the mild-slope system of equations has inviscid �uxes and no viscous �uxes.
U , F and G are given as

F · n=F = e · nx + f · ny

U =



�

qx
qy


 ; e=



cqx=cg
ccg�

0


 ; f=



cqy=cg
0

ccg�


 ; G=



qx@(c=cg)=@x + qy@(c=cg)=@y

�@(ccg)=@x

�@(ccg)=@y


 (6)

where nx and ny denote the components of the outward normal vector n in the x and y
directions, respectively. The average value of the conserved variables is stored at the centre
of each cell and the edges of each cell de�ne the faces of a triangular control volume. For
each triangular control volume, Equation (5) is written as

@UiVi
@t

=−
∮
@Ci
F · n dS +GiVi=−R(Ui) (7)

where Ui and Gi are the average quantities of cell i stored at the cell centre, @Ci and Vi
denote the boundary and area of cell i, respectively, and −R(Ui) contains all the right-hand
side terms. The integral in Equation (7) may be evaluated as indicated by Equation (4) of
Anastasiou and Chan [10].

3. EVALUATION OF INVISCID FLUXES

3.1. Evaluation of inviscid �uxes

For the solution of the hyperbolic system of mild-slope equations with a Godunov-type
method, we assume a one-dimensional Riemann (shock tube) problem in the direction normal
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to the cell edge. The inviscid numerical intercell �uxes required in Equation (7) are eval-
uated using Roe’s �ux function [13, 14] adopted locally at each cell edge, as indicated by
Equation (5) of Anastasiou and Chan [10]. The �ux Jacobian, J , of the system is given by

J =
@(F · n)
@U

=




0 cnx=cg cny=cg
ccgnx 0 0

ccgny 0 0


 (8)

The eigenvalues of J are

�1 = 0; �2 =
√
c2(n2x + n2y)= cn; �3 =−

√
c2(n2x + n2y)=−cn

|�|=diag[|�1|; |�2|; |�3|]
(9)

The right, R, and left, L, eigenvector matrices are given by

R=



0 n=cg n=cg
ny nx −nx
−nx ny −ny


 ; L=R−1 =




0 ny=n2 −nx=n2
cg=2n nx=2n2 ny=2n2

cg=2n −nx=2n2 −ny=2n2


 (10)

and hence Roe’s matrix is given by

|A|=



cn 0 0

0 cn2x=n cnxny=n

0 cnxny=n cn2y=n


 (11)

where n is the magnitude of the outward normal vector, n. When n is a unit vector then
n=1. The fact that the eigenvalues of the Jacobian are all real and the right eigenvectors are
linearly independent (since the eigenvalues are distinct), con�rms that the system of mild-slope
equations is strictly hyperbolic.

3.2. Extension of the scheme to obtain second-order accuracy in space

An essential part of the solution process is the determination of the left (interior, −) and
right (exterior, +) Riemann states at each interface. In a �rst-order space accurate scheme the
conserved variables Ui are assumed constant throughout each cell i, i.e. ∇Ui=0. This means
that for all edges, j, of cell i, U−

i; j =Ui.
Van Leer [15] introduced the idea of modifying the piecewise constant data in the �rst-

order Godunov method, as a �rst step to achieving higher accuracy. In order to achieve
second-order accuracy in space, a piecewise linear variation of the conserved variables vector
is assumed within each cell, i.e. ∇Ui=constant. For a given cell with centre P0, for example,
the interior Riemann states at the cell vertices, are computed according to expression (10)
of Anastasiou and Chan [10], while the gradient of the variables within each cell, ∇U0, is
computed according to Equation (11) of Anastasiou and Chan [10]. The estimated gradient
accuracy can be further improved by carrying out a weighted averaging process [16], as
indicated by Equations (12) and (13) of Anastasiou and Chan [10].
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Figure 1. Characteristic directions for the mild-slope equation at in�ow and out�ow boundaries.

In order to extend the second-order accurate formulation to the boundary cells as well,
a row of external elements (phantom cells) which are mirror images of the boundary cells
is necessary. Since each phantom cell can have a maximum of two adjacent cells, a closed
integration path similar to that of internal cells does not exist, and hence at the phantom cells
the scheme is only �rst-order accurate in space.

4. INITIAL AND BOUNDARY CONDITIONS

Stillwater level conditions are assumed throughout the domain initially, i.e. �= qx= qy=0.
The eigenvalues and hence the characteristic directions are independent of the conserved

variables for the linear mild-slope system, i.e. they are constant with time for each interface
and are given by C0 =0, C+ = c and C−=−c. For boundary cells this means that there is
always one ‘wave of information’ travelling from outside of the domain to the interior and one
travelling from the interior through to the exterior. The third wave (�1 = 0) travels along the
boundary and therefore gives no useful information. In Figure 1 the characteristic directions
are shown for an in�ow and an out�ow in the direction normal to a boundary cell edge.
Since each characteristic direction can be considered as transporting a given information

(characteristic variable, WC =LU where L, U as de�ned in Equations (10) and (6), respec-
tively), the quantities transported from the inside of the domain towards the boundary will
in�uence and modify what goes on at this boundary. Hence, only variables transported from
the boundaries towards the interior of the domain may be freely imposed as physical bound-
ary conditions [17]. In both cases of in�ow and out�ow the C− characteristic direction is
responsible for transporting information to the interior of the computational domain. As a
result one physical quantity must be imposed=prescribed. The remaining variables will depend
on the computed �ow quantities and are, therefore, part of the solution. These variables must
satisfy the so-called numerical boundary conditions.

4.1. Driving (o�shore) boundary conditions

As already mentioned, the eigenvalues are independent of the conserved variables and hence
give no useful information that may be used as boundary conditions. It was therefore necessary
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to resort to an extrapolation method for the treatment of boundaries. A zero-order space
extrapolation of the characteristic variables was selected [17]. For the boundary edge local
co-ordinate system this yields

W+
C =W

−
C ⇒




−v+
cg�+=2 + u+=2

cg�+=2− u+=2


=

 −v−
cg�−=2 + u−=2
cg�−=2− u−=2


 (12)

where u and v are the qx and qy components with respect to the local co-ordinate system,
‘+’ denotes an exterior state and ‘−’ an interior state. Prescribing �+ = �pr and using the
characteristic relations corresponding to the C0 and C+ directions (i.e. �rst and second rows
of Equation (12)) to provide the remaining two numerical boundary conditions, we obtain the
following set of boundary conditions:



�+

u+

v+


=

 �pr
u− + cg(�− − �pr)

v−


 (13)

The quantities u and v may then be transformed back to the global co-ordinate system.
Conditions (13) satisfy the well-posedness criterion [17] indicating that the problem will be
well-posed at all boundaries when � is prescribed. Furthermore, knowledge of the physical
form of Q is not required for this set of boundary conditions, since neither qx nor qy (i.e. u,
v) need to be prescribed in (13).
The sinusoidal surface elevation at each driving boundary node is calculated according to

small-amplitude theory using the local wave amplitude and the time delay (cumulative phase)
until the disturbance reaches the particular node.

4.2. Out�ow (transparent) boundary conditions

At out�ows the surface elevation is generally not known and hence cannot be prescribed
using Equation (13). To overcome this problem, attempts were made to estimate �pr by
extrapolating at each boundary node the known �− value from the previous time level to the
current time level. Unfortunately, these attempts were unsuccessful as the wave form was not
predicted accurately, thus introducing spurious oscillations at the boundaries that eventually
spread throughout the domain.
The most obvious set of transparent boundary conditions, U+ =U−, was subsequently tested

but, similarly, with no success since the waves were absorbed in the interior of the domain
as well, rather than only in the outgoing direction only, as desired.
It may be shown that Q= cg�= |Q| is a solution of Equation (2) provided that ∇cg = 0,

giving thus a practical relationship for Q in deep water or where the depth is uniform [8]. This
relationship, also suggested by Equations (3) (as cg�= ccgu0−r=g, where u0−r is the stillwater
level particle velocity in the direction of wave propagation r), �nally provided adequate
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A B

C

Figure 2. Space averaging region for exit angle estimation at out�ow boundary edges.

boundary transparency. The set of boundary conditions is expressed by



�+

q+x
q+y


=

 �−

cg�− cos �
cg�− sin �


 (14)

where � is the out�ow angle, which coincides with the initial angle of incidence in the case
of propagation over an horizontal bottom and in the absence of obstacles. In the presence
of obstacles and=or irregular bathymetry, the exit angle is not known and thus a space and
time averaged angle is calculated for each boundary edge at run-time, based on the previous
known values of the velocity components at the surrounding cells. Combinations of di�erent
averaging formulas and regions were investigated and assessed for oblique wave propagation
over on open domain with uniform bed topography. The combination which performed best,
and which was eventually adopted as the transparent boundary condition, consists of the
averaging formula (15) applied over an averaging region as illustrated in Figure 2.

��= tan−1
(∑ncv

i=1

∑ndt
j=1 qy; i; j∑ncv

i=1

∑ndt
j=1 qx; i; j

)
(15)

where ndt is the number of time steps from the time of velocity component collection (which
is taken to be the arrival of the disturbance at the particular out�ow boundary cell) until the
current time, t, and ncv are the cells constituting the averaging region.
For a general out�ow boundary edge, AB, the velocity components are collected at every

time step for the shaded cells, i.e. the cells that have at least a common vertex with the
triangle ABC to which edge AB belongs. In this case ncv=8. The computed average angle
is adopted as the exit angle for both nodes A and B.
A well-posedness analysis is meaningless, both for the U+ =U− boundary condition and

for condition (14), since in both cases no external quantity is imposed but instead internal
information is used. However, in the latter case the solution Q= cg� is imposed, resulting in
a fairly e�ective transparent boundary condition (as will be shown later).
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4.3. Fully re�ective (impermeable wall) boundary conditions

The velocity normal to a rigid, impermeable, fully re�ecting boundary in the domain must be
zero. The following exterior (+) Riemann states are therefore imposed along solid boundaries:


�+

u+

v+


=

�−0
v−


 (16)

where u and v are the qx and qy components with respect to the edge-local co-ordinate system.
The u and v are then transformed back to the global co-ordinate system. Work is currently un-
dergoing on implementing partially re�ective boundaries by incorporating an energy-dissipative
region in front of the wall [18]. The width and dissipation factor within this layer a�ect the
absorbed and re�ected energy.

4.4. Treatment of lateral boundaries for normal wave incidence

Rectangular domains are often encountered in 2D coastal wave modelling. For oblique wave
incidence, there exist two driving boundaries (hence use of Equation (13)) and two out�ow
boundaries (hence use of Equations (14) with (15)). For normal incidence there exists one
driving, one out�ow and two lateral boundaries. Lateral boundaries can either be treated using
Equation (13) or using Equations (14) and (15).
In cases where the major part of the ‘�ow’ is along a lateral boundary, a ‘far �eld’ situation

can be assumed. Equation (13) can then be used to drive the lateral boundary, assuming that
� remains una�ected by the �ow conditions in the interior of the domain. In that way the
characteristic requirements are only violated at the downwave out�ow boundary, and use of
(13) will produce more accurate results but will also partially re�ect back into the domain
the outgoing disturbance. This implies that the simulation must not be carried out for a very
long time and the computation must be terminated before numerical re�ections reach the area
of interest.
When the major part of the ‘�ow’ is across a lateral boundary then Equation (13) will

create signi�cant re�ections, and it is preferable to use Equations (14) and (15).

5. TIME INTEGRATION

The values of the conserved variables at the next time level are computed from Equation (7),
which may be expressed as

(UV )n+1i − (UV )ni
�t

=−[�R(Un+1
i ) + (1− �)R(Un

i )] (17)

where Un+1
i is the vector of variables for cell i at time level n + 1, Un

i is the known state
at time level n, �t is the time step, Vi is the area of cell i (constant with respect to time
for a non-adaptive scheme) and R(Un

i ) is the right-hand side of Equation (7) evaluated as
described in the previous sections. When �=0, Equation (17) is the Euler explicit scheme,
when �=1, it is the �rst-order Euler implicit scheme, and when �=0:5, it is the second-order
trapezoidal implicit scheme.
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In explicit time integration the variables are updated in time based solely on the values at the
previous time level. Results from explicit time integration were not satisfactory (see Sections
6.1 and 6.2) and in addition this approach required very small time steps. Consequently
the more accurate implicit time integration was implemented. For � �=0 it can be seen from
Equation (17) that in order to compute the unknown state, Un+1

i , the value of R at that state
is required, hence the implicit feature of the scheme.
Another important characteristic of the implicit formulation is that the value of R for cell

i at time n+ 1 depends not only on the values of the variables (U ) for that cell but also on
those for the adjacent cells.
Solution of the implicit Equation (17) is achieved by linearizing it using Newton’s method

[19], whereby the unknown quantities, Un+1
i , are approximated by a known state, Us

i , plus an
error quantity, �Us

i , for all cells i, where s is a subiteration index. Substituting Equations (4)
and (5) of Anastasiou and Chan [10] into Equation (7) of the present paper, recalling that
J = @F=@U is the �ux Jacobian, and applying Newton’s linearization in Equation (17), yields
the following implicit formulation for a cell in the domain:

[
V0
�t
I + �

3∑
p=1

1
2
(J0 + |A0; p|)�l0; p + V0 @G0

@Un+1
0

]
�Us

0

+
3∑
q=1

[
�
1
2
(Jq − |A0; q|)�l0; q

]
�Us

q

=−
[
V0
�t
(Us

0 −Un
0 ) + �R(U

s
0) + (1− �)R(Un

0 )
]

(18)

where 0 denotes the particular cell and 1, 2, 3 denote its adjacent cells, subscripts i; j refer
to the interface between cells i and j, and I is the identity matrix. The source Jacobian can
be found to be from Equation (6)

@G0
@Un+1

0

=




0 @(c=cg)=@x @(c=cg)=@y

@(ccg)=@x 0 0

@(ccg)=@y 0 0


 (19)

Equation (18) demonstrates clearly the cell-coupling e�ect of the implicit scheme. The
implementation of the phantom cells allows treatment of boundary cells in exactly the same
manner as that appropriate for the interior cells. Application of Equation (18) to all cells in
the domain results in a matrix equation of the type Bx=C where B is a N ×N matrix, with
only 4 non-zero (not necessarily consecutive) entries per row, and x, C are N × 1 matrices
(N =number of cells in domain). Each of the elements in B, x and C is a 3× 3 matrix. Direct
inversion of B would require excessive computational resources. Instead, the fully discretized
implicit time integration equation is written as

(Ddiag + Llow +Uup)�Us=RHS (20)

where Ddiag is a block diagonal matrix, Llow is a block lower triangular matrix, and Uup is
a block upper triagonal matrix, with each of the elements in these matrices being a 3× 3
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matrix. The approximate LU factorization (ALU) scheme as proposed by Pan and Lomax
[20] is then adopted to convert the implicit Equation (20) into the form

(Ddiag + Llow)D−1
diag(Ddiag +Uup)�U

s=RHS (21)

where the error of factorization is equal to LlowD−1
diagUup�U

s. �Us may now be obtained
in a straight forward manner with minimum computing storage and time requirements since
the inversion of 3N , 3× 3 matrices is required rather than the inversion of one, 3N × 3N
super-matrix. Subiterations within each time step are commenced by setting Us

i =U
n
i and are

terminated when the L2 norm of the iteration process,

L2=
[
1
N

(
N∑
i=1
(�Us

i )
2
)]1=2

(22)

is less than a speci�ed tolerance value (usually 10−4). As �Us tends to zero, Us
i tends to

the time accurate Un+1
i , and at the same time the ALU factorization error tends to zero. In

most cases 2–3 subiterations are required per time step.
The following relation has been adopted for the computation of the time step for the implicit

scheme:

�t=
1
N

N∑
i=1

{
min
j=k(i)

(
Cf l
0:5 si; j
ci

)}
(23)

where N is the total number of cells in the domain, k(i) is a list of the three adjacent cells
to cell i, Cf l is a user speci�ed Courant-like number (sensible range: 0:256Cf l61:75), si; j is
the distance between the centres of the adjacent cells i and j, and ci is the wave celerity at
cell i. The time step value for the implicit scheme is generally one order of magnitude larger
than the feasible time step in the explicit time integration formulation.
Finally, it must be noted that for the cases tried better results were obtained using the

second-order trapezoidal time integration (�=0:5) compared with the fully implicit time in-
tegration (�=1:0) and hence the former has been adopted in order to obtain the results
described in the present study.

6. NUMERICAL RESULTS

The linear model was tested for a variety of nearshore wave propagation problems. In all
cases the stillwater depth, d, at each cell centre was computed from the bathymetry input grid
according to the following inverse-power interpolation technique:

di=
n∑
j=1

dj
Smi; j

/
n∑
j=1

1
Smi; j

(24)

where, Si; j is the distance between the centre of cell i and the bathymetry input point j, m
is an integer specifying the power of interpolation and n is the number of points used in the
interpolation. High values of m result in sharper bottom variation. In the present algorithm,
m is set to 2 and n to 3.
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Table I. Maximum, average and standard deviation of the error in an open domain, uniform depth
(d=1 m), sinusoidal wave with Hin = 0:06 m, T =0:8 s, simulation for 100 s.

Incident Mesh density Errors in wave height as predicted from �nite volume formulations (in %)
angle (deg) (nodes=L) Explicit time integration Implicit time integration

0 10 Max: 17.73, avg: 4.99, std: 3.58 Max: 6.23, avg: 1.65, std: 1.28
0 20 Max: 5.33, avg: 1.53, std: 1.22 Max: 1.51, avg: 0.35, std: 0.25
30 10 Max: 13.70, avg: 3.58, std: 2.54 Max: 10.51, avg: 4.69, std: 1.92
30 20 Max: 7.16, avg: 1.36, std: 1.18 Max: 2.22, avg: 0.78, std: 0.42
45 10 Max: 8.63, avg: 2.67, std: 1.79 Max: 13.75, avg: 5.92, std: 2.24
45 20 Max: 5.29, avg: 1.02, std: 0.87 Max: 2.94, avg: 1.00, std: 0.46
60 10 Max: 13.09, avg: 3.01, std: 2.26 Max: 14.71, avg: 5.82, std: 2.62
60 20 Max: 6.71, avg: 1.15, std: 1.03 Max: 3.15, avg: 0.99, std: 0.52
75 10 Max: 15.83, avg: 3.34, std: 2.51 Max: 14.59, avg: 6.04, std: 2.66
75 20 Max: 5.85, avg: 1.13, std: 0.96 Max: 3.05, avg: 1.07, std: 0.52

Average 10 Max: 13.80, avg: 3.52, std: 2.54 Max: 11.96, avg: 4.82, std: 2.14
errors 20 Max: 6.07, avg: 1.24, std: 1.05 Max: 2.57, avg: 0.84, std: 0.43

Furthermore, the wave height, H , for each cell was calculated from the surface elevation
time series according to

Hi=2(2�2i )
1=2 (25)

where the overbar denotes time averaging. Collection of � was started after one full period
had elapsed from the time instant when the wave �rst reached the point furthest away in the
domain, and continued until the pre-speci�ed termination time was reached. The option of
calculating Hi with the zero up-crossing method has also been included. According to this
method a user de�ned number of initial waves may be neglected and Hi computed as the
average of another user de�ned number of successive up-crossings of zero. Once the speci�ed
number of waves has been collected for each cell the program automatically terminates. This
‘auto-termination’ switch may be used as a safeguard against unwanted contamination of
results in the area of interest by potential re�ections. All simulations were carried out on a
desktop PC with 128MB SDRAM and an Intel PII CPU running at 333MHz. The execution
time of each simulation is denoted as tCPU.

6.1. Wave propagation over an horizontal bed

The simplest possible propagation problem was initially examined. Regular waves were prop-
agated for 100 s over an open 4m× 3m domain with 1 m uniform depth. The incident wave
had height Hin = 0:06 m, and period T =0:8 s. Mesh densities corresponding to 10 (coarse
mesh) and 20 (�ne mesh) nodes per wavelength were tried. In the implicit formulation, time
steps equal to 0.02 and 0:01s for the coarse and �ne meshes, respectively, were used, whereas
in the explicit formulation, time steps equal to 0:004 s for the coarse and 0:001 s for the �ne
mesh were used. Results were obtained for �ve di�erent angles of incidence and the maxi-
mum, average and standard deviation of error in the domain were computed (see Table I).
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Figure 3. Surface elevation contour plot for 45◦ incidence, Hin = 0:06 m, T =0:8 s,
1 m uniform depth, 20 nodes per wavelength, at t=100 s.

The error for a cell, i, is calculated from

(Error%)i=
|H predicted
i −H analytical

i |
H analytical
i

100 (26)

From the last row of Table I it is evident that for the �ne mesh the errors are signi�cantly
lower for the implicit formulation. The fact that the explicit formulation gives a lower average
error for the coarse mesh is an indication that the implicit formulation requires a higher than
10 nodes per wavelength resolution (approximately 15 nodes per wavelength). Furthermore,
both formulations are seen to be consistent with the governing equations in the sense that the
errors associated with the �ne mesh are lower than those associated with the coarse mesh for
all incident wave angles.
The surface elevation contour plot for wave propagation at 45◦, based on the implicit

formulation and 20 nodes per wavelength, is presented in Figure 3. The contours are straight
and parallel as expected. For this run, the percentage error in the average wave height in the
domain (a measure of the energy present in the domain) was output at each time step for a
long simulation time (1600 s=2000 wave periods) and is shown in Figure 4. It may be seen
that the insigni�cant error oscillations (e.g. amplitude of error oscillation B≈ 0:06%) keep
amplifying with time (see pro�les A, B and C) but assuming that this pattern persists, an
unrealistically long simulation time is required before a signi�cant increase in instantaneous
error is obtained. More importantly, � is collected throughout the computation time for the
calculation of H , and hence the error oscillations cancel out resulting in an average error of
about 1% (as Table I also suggests). Figure 4 shows that the out�ow boundary conditions do
not re�ect back into the domain any of the outgoing wave energy.
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The above results corresponded to deep water conditions. In intermediate and shallow waters
the errors were similar to those in deep water, with the errors gradually increasing as the water
depth reduced. However, the average spatial error remained below the 2.5% margin for 20
nodes per wavelength and for all angles of incidence tested. Furthermore, it must be noted
that slightly better agreement was achieved for a more linear wave train with ak=0:094
(for Hin = 0:03, T =0:8 s) rather than the one used to obtain the above results which had
ak=0:188.

6.2. Wave shoaling over a linear talud

Regular waves were also propagated over an open 14 m× 10 m domain with a linear talud
bathymetry (plane slope, each end of which is connected to a constant depth region) consisting
of a 1:8 slope starting at x=4 m, with a depth equal to 1 m, and ending at a depth equal
to 0:2 m. The analytical (linear, pure shoaling) solution for the particular bathymetry and
incident wave exhibits a turning point (see Figure 5) providing thus an interesting test case.
The incident wave train had Hin = 0:06 m, T =1:3 s and normal incidence to the slope. The
domain consisted of 28 000 cells (14 241 nodes) giving on average 22 nodes per wavelength.
The conditions given in Equation (13) were used at the driving and lateral boundaries. At
the downwave boundary the conditions given in Equations (14) and (15) were deployed. In
Figure 5 the normalized wave height along the centreline of the domain (in the direction of
wave incidence) is shown.
Time steps of 0.001 and 0:012s were used in the explicit and implicit �nite volume formu-

lations, respectively. The oscillations in both formulations over the slope (i.e. for 96x610)
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Figure 8. Normalised wave height contours for normal wave incidence onto a breakwater gap of width
equal to 1L (solid: analytical [22]; dashed: linear predictions).

may be attributed to slope re�ections. The results were compared with the 2D linear analytical
solution and the errors (from Equation (26)) were found to be:

• Explicit �nite volume formulation: max: 5.93%, avg: 1.57%, std: 1.34%.
• Implicit �nite volume formulation: max: 2.84%, avg: 0.45%, std: 0.47%.
For the explicit formulation tCPU =58:9 min, while for the implicit scheme tCPU =21:4 min

owing to the fact that larger time steps can be used in the implicit scheme. The errors
associated with the implicit formulation are signi�cantly lower than those of the explicit
formulation. Furthermore, the failure of the explicit formulation to model shoaling is evident
from Figure 5, and thus it was decided to stop using the explicit formulation. All the numerical
results presented in the following sections have been obtained based on the second-order
trapezoidal implicit formulation.
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Figure 9. Normalized wave height at a distance 4L behind the two semi-in�nite
breakwaters (i.e. at x=5L), normal incidence.

6.3. Wave di�raction behind a semi-in�nite breakwater and through a breakwater gap

The di�raction of a regular wave train propagating in the lee of a semi-in�nite breakwater and
also through a breakwater gap has been studied numerically for di�erent angles of incidence.
Due to space limitations, the results from two con�gurations are only presented. In both cases,
the mesh density was 20 nodes per wavelength, �t=0:01 s, Hin = 0:03 m, T =0:8 s, d=1m
throughout.
The computed (tCPU =163:8 min) normalized wave height contours for a semi-in�nite break-

water at 45◦ wave incidence, can be seen in Figure 6, plotted against the analytical contours.
Some oscillations in the proximity of the out�ow boundaries can be observed, which stem
from the increased numerical error for low out�ow velocities. This error is in turn introduced
into the exit angle estimation through Equation (15). Thus, the oscillations become more
conspicuous towards the more sheltered regions, where the wave heights and hence wave
velocities are low. In order to obtain a better insight, the predicted and analytical normalized
wave heights along a section parallel to the breakwater and at a distance 4L (i.e. at x=5L)
are shown in Figure 7. Agreement between linear predictions and analytical solutions is seen
to be very good.
The computed (tCPU =133:6 min) normalized wave height contours for a breakwater gap

con�guration at normal wave incidence are shown in Figure 8. For gap widths in excess of
about 5L, the di�raction patterns at either side of the opening are more or less independent
of each other [22]. A relatively narrow gap, equal to 1L, was therefore selected with a view
to providing a good indication of the interacting di�raction patterns in the lee of the two
semi-in�nite breakwaters. Agreement between predictions and analytical solutions is seen to
be fairly good, with the predictions underestimating the energy spreading along the centreline
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Figure 10. 3D surface elevation snapshot behind a breakwater gap of width equal to 1L,
normal incidence, Hin = 0:03 m, T =0:8 s, at 11:4 s.

and generally overestimating it in the transverse direction away from the centreline. This is also
evident in Figure 9, where the results for the section at x=5L are also shown. Underprediction
at the peak for that section is 5.58%. The 3D surface elevation at time 11:4 s is shown in
Figure 10.

6.4. Combined refraction–di�raction in the vicinity of an elliptic shoal

In order to further verify the model, numerical predictions were compared with the experi-
mental data of Berkho� et al. [23]. The bathymetry consisted of an elliptic shoal resting on
a 1:50 plane sloping seabed. The entire slope is turned at an angle of 20◦ with respect to
the wave paddles. The bathymetry and computational domain used are shown in Figure 11.
The average mesh density was 15 nodes per wavelength, the time step interval �t=0:012 s,
the incident wave height Hin = 0:0464m, and the wave period T =1:0 s. The conditions given
in Equation (13) were used at the driving and lateral boundaries, and the conditions given
in Equations (14) and (15) were deployed at the downwave boundary. The execution time,
tCPU, for this run was equal to 208:7 min.
For brevity, the normalized wave heights along Sections 3, 4, 6 and 7 only are given, see

Figs. 12(a)–12(d). In Section 3, the peak is overestimated by 8% and signi�cant depressions
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Figure 11. Topography and computational domain for the experiment of Berkho� et al. [23]. Dashed
lines and labels indicate the various sections (centre of shoal at {11; 11} metres).

on each side of the peak are predicted which are not physically present. In Section 4, the
computed peak is in good agreement with the measured one but the pro�le around the peak is
predicted narrower than that measured. Furthermore, the side lobes are predicted higher than
observed. In the longitudinal Section 6, the numerical model fails to predict the wave height
depression around x=19:5m. In Section 7, it may be seen that focusing is predicted to occur
sooner and that the shoreward wave height distribution is underestimated.
The presented results suggest that the model is capable of simulating satisfactorily wave

transformation over bathymetries instigating wave focusing.

6.5. Investigation of paraxiality in the vicinity of a submerged circular shoal

In this section, results for the numerical experiment of Kirby [5] are presented and discussed.
Waves were propagated over a circular shoal placed on an horizontal seabed at 0◦ and 45◦

angles of wave incidence (Hin = 0:0464 m; T =1 s). In both cases the mesh density was on
average 13 nodes per wavelength. A �ner mesh was not used since in this case the ability
of the model to reproduce results for di�erent angles of incidence over the same bathymetry
was investigated rather than the actual accuracy of the results.
The surface elevation for 0◦ and 45◦ wave incidence can be seen in Figures 13 and 14,

respectively. The execution time, tCPU, was 119:6 min for the 0◦ wave incidence and 203:9 min
for the 45◦ wave incidence. The execution time was longer in the latter case since the wave
train had to travel a longer distance (the diagonal of the domain) until it triggered the ‘auto-
termination’ switch. It is evident that in both cases wave focusing occurs behind the shoal
centre in the direction of wave propagation, and very symmetrically with respect to it. The
resulting normalized wave height contours are superimposed in Figure 15. The 45◦ results
were rotated by exactly 45◦ clockwise and translated +5 m in the y-axis so that the two
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Figure 12. Comparison of numerical predictions with the experimental data of Berkho� et al. [23]: (a)
transverse section 3 along x=16m; (b) transverse Section 4 along x=18m; (c) longitudinal Section 6

along y=9 m; and (d) longitudinal Section 7 along y=11 m.

shoals coincided. We see that the wave height contours are in very good agreement for the
two cases, any slight di�erences attributed to the di�erent orientation of the wave fronts in
each case with respect to the computational cell edges. The evidence presented suggests that
the model is paraxiality-free. On the contrary, Kirby’s [5] parabolic model (enhanced for
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Figure 12. Continued.

large angle wave propagation), exhibits a distinctive surface elevation asymmetry at 45◦, for
the 70◦ minimax approximation, which is absent at normal incidence. Furthermore, Kirby [5]
rotated the normalized wave height contours by 39:75◦ instead of 45◦, so as to forcefully
align the focusing points of the two cases, and even by doing so he did not obtain results as
good as the ones presented in Figure 15.
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Figure 13. Surface elevation plot over the circular shoal for normal wave incidence
(centre of shoal at {6; 11} metres).

7. CONCLUSIONS

The development of a versatile �nite volume solver for the harmonic hyperbolic form of the
2D depth-integrated mild-slope equation has been presented. Unstructured triangular meshes
have been employed, able to discretize e�ectively irregular domains. A distinctive feature of
the present methodology is the construction of Roe’s �ux function through each side of a
triangular cell by considering a 1D local Riemann problem. The eigensystem required for
the construction of Roe’s matrix has been derived. Second-order accuracy in space has been
obtained by considering a linear variation of the conserved variables within each internal
triangular cell.
Boundary conditions for driving boundaries have been derived by applying a zero-order

space extrapolation of the characteristic variables. Transparent boundary conditions have been
formulated by computing the wave exit angle at run time and imposing the solution Q= cg�
of the mild-slope equation. Setting the external Riemann state u+ equal to zero has achieved
e�ective simulation of fully re�ective boundaries.
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Figure 14. Surface elevation plot over the circular shoal for 45◦ wave incidence
(centre of shoal at {6; 6} metres).

The formulation of a second-order accurate implicit time integration scheme has been pre-
sented in detail and its superiority as opposed to the explicit formulation has been established.
Furthermore, implementation of the implicit formulation has expedited the solution process
(even though 2–3 iterations per time step are executed in the implicit formulation), since the
feasible time step associated with the implicit formulation is generally one order of magnitude
larger than that of the explicit formulation.
The model was found to be consistent, paraxiality-free and in close agreement with available

analytical results. The model can be used to predict wave transformation behind breakwaters
and harbour agitation as long as the boundaries are, at this stage, fully re�ecting. Compar-
ison with experimental results has veri�ed that the present model deals satisfactorily with
bathymetries instigating wave focusing.
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